Solving without expansions in limitsHelp with solving limitsA problem in limitsFinding the limit without...

Why would one plane in this picture not have gear down yet?

Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?

Distinction between apt-cache and dpkg -l

Do recommendation systems necessarily use machine learning algorithms?

In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?

Signed and unsigned numbers

Was Luke Skywalker the leader of the Rebel forces on Hoth?

Can you reject a postdoc offer after the PI has paid a large sum for flights/accommodation for your visit?

What are the threaded holes in Manfrotto camera brackets?

Why the color red for the Republican Party

If I receive an SOS signal, what is the proper response?

How to write ı (i without dot) character in pgf-pie

Are babies of evil humanoid species inherently evil?

Are there historical instances of the capital of a colonising country being temporarily or permanently shifted to one of its colonies?

How many characters using PHB rules does it take to be able to have access to any PHB spell at the start of an adventuring day?

Examples of a statistic that is not independent of sample's distribution?

weren't playing vs didn't play

Could you please stop shuffling the deck and play already?

Is it "Vierergruppe" or "Viergruppe", or is there a distinction?

Intuition behind counterexample of Euler's sum of powers conjecture

What are actual Tesla M60 models used by AWS?

Reversed Sudoku

Makefile strange variable substitution

Latex does not go to next line



Solving without expansions in limits


Help with solving limitsA problem in limitsFinding the limit without L'Hospital's rule.Solving Limits with L'Hospital's RulesEvaluate limits of trigonometric equationHow to calculate $limlimits_{xto 0} frac{[sin{x}-x][cos({3x})-1]}{x[e^x -1]^4}$ without using L'Hôpital's Rule?Evaluating limits via Infinite SeriesExamples of limits that become easier with Taylor seriesEvaluating $lim limits_{x to 0} frac {e^{-1/x^2}}{x}$ without using L' Hôpital's ruleClarify difference in solving limits to infinity vs finite limts













3












$begingroup$



Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$




One way that I can immediately think of is expanding each of the terms and solving like,
$$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.



Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$



    Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$




    One way that I can immediately think of is expanding each of the terms and solving like,
    $$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
    and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.



    Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      3



      $begingroup$



      Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$




      One way that I can immediately think of is expanding each of the terms and solving like,
      $$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
      and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.



      Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!










      share|cite|improve this question











      $endgroup$





      Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$




      One way that I can immediately think of is expanding each of the terms and solving like,
      $$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
      and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.



      Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!







      calculus limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago







      rash

















      asked 4 hours ago









      rashrash

      34812




      34812






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,



          begin{align*}
          lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
          &= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
          &= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
          &= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
          end{align*}



          Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals



          $$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
          = frac{11}{24}e. $$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            If I may suggest, the problem of
            $$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
            $$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
            $$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
            $$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
            $$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144560%2fsolving-without-expansions-in-limits%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,



              begin{align*}
              lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
              &= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
              &= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
              &= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
              end{align*}



              Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals



              $$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
              = frac{11}{24}e. $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,



                begin{align*}
                lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
                &= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
                &= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
                &= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
                end{align*}



                Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals



                $$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
                = frac{11}{24}e. $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,



                  begin{align*}
                  lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
                  &= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
                  &= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
                  &= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
                  end{align*}



                  Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals



                  $$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
                  = frac{11}{24}e. $$






                  share|cite|improve this answer









                  $endgroup$



                  Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,



                  begin{align*}
                  lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
                  &= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
                  &= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
                  &= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
                  end{align*}



                  Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals



                  $$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
                  = frac{11}{24}e. $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 20 mins ago









                  Sangchul LeeSangchul Lee

                  95.6k12171279




                  95.6k12171279























                      2












                      $begingroup$

                      If I may suggest, the problem of
                      $$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
                      $$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
                      $$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
                      $$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
                      $$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        If I may suggest, the problem of
                        $$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
                        $$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
                        $$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
                        $$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
                        $$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          If I may suggest, the problem of
                          $$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
                          $$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
                          $$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
                          $$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
                          $$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.






                          share|cite|improve this answer









                          $endgroup$



                          If I may suggest, the problem of
                          $$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
                          $$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
                          $$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
                          $$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
                          $$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          Claude LeiboviciClaude Leibovici

                          124k1157135




                          124k1157135






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144560%2fsolving-without-expansions-in-limits%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                              is 'sed' thread safeWhat should someone know about using Python scripts in the shell?Nexenta bash script uses...

                              Meter-Bus Содержание Параметры шины | Стандартизация |...