R MODIS MOD13Q1 quality issues? The Next CEO of Stack OverflowMODIS MOD13Q1 ndvi calculationVI...

Return the Closest Prime Number

Can a single photon have an energy density?

Why here is plural "We went to the movies last night."

Implement the Thanos sorting algorithm

Why does standard notation not preserve intervals (visually)

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?

What is the difference between "behavior" and "behaviour"?

Increase performance creating Mandelbrot set in python

How to count occurrences of text in a file?

Anatomically Correct Mesopelagic Aves

The King's new dress

Solution of this Diophantine Equation

How to make a variable always equal to the result of some calculations?

Trouble understanding the speech of overseas colleagues

Where to find order of arguments for default functions

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?

If the heap is initialized for security, then why is the stack uninitialized?

How do spells that require an ability check vs. the caster's spell save DC work?

Text adventure game code

How do we know the LHC results are robust?

What happens if you roll doubles 3 times then land on "Go to jail?"

How long to clear the 'suck zone' of a turbofan after start is initiated?

What makes a siege story/plot interesting?

MAZDA 3 2006 (UK) - poor acceleration then takes off at 3250 revs



R MODIS MOD13Q1 quality issues?



The Next CEO of Stack OverflowMODIS MOD13Q1 ndvi calculationVI Quality dataset in MODIS imageHow can I parse modis MOD13Q1 quality layers in R?Handling MOD13Q1 NDVI Product Quality Assessment (QA) flags?Clipping raster brick object in RHow to remove cloudy pixel from MODIS NDVI (MOD13Q1)Applying MODIS Pixel Reliability and Vegetation Index (VI) Quality mask for MOD13Q1 using ArcGIS Desktop?Make linear regression in multiple raster layersStack RasterDataset taking into account the dates between imagesHow to define 3 average month values in a NDVI Modis time serie












0















I'm running into some issues with 250m 16-day MOD13Q1 NDVI data using the MODIS package in R.



Looking at the following raster plot, there are certain days where the NDVI does not match the true surface characteristics. Specifically ndvi.2017.11.01 and ndvi.2018.01.17. Even ndvi.2018.03.06 and ndvi.2018.02.18 are questionable. Is it possible to programmatically exclude these layers? Is there something to gain by using the following sds layer: MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality?



enter image description here



Below is the code to produce the above plot:



# Final Study Area Boundary
study_area <- readRDS(gzcon(url('http://web.pdx.edu/~porlando/study_area.RDS')))
# Study CRS
epsg_26910 <- "+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs "

# Download Data
runGdal(product = "MOD13Q1", collection = "006"
,tileH = 9, tileV = 4
,begin = str_replace_all("2017-09-01", "-", ".")
,end = str_replace_all("2018-09-30", "-", ".")
,overwrite = TRUE)


# Process data
ndvi_path <- "./MODIS/MOD13Q1.006" # 250 m

ndvi_files <- list.files(path = ndvi_path, pattern = "\.hdf$"
,all.files = FALSE, full.names = TRUE
,recursive = TRUE
,ignore.case = FALSE)


processNDVI <- function(file_path, study_area = study_area, proj = epsg_26910) {

cat("n")

# extract date from file path
date <- stringr::str_extract(file_path, '[0-9][0-9][0-9][0-9].[0-9][0-9].[0-9][0-9]')
date_clean <- stringr::str_replace_all(date, "\.", "-")

# coerce 16 day average to daily composite?
dates <- seq.Date(from = as.Date(date_clean)
#,to = as.Date(date_clean) + lubridate::days(15)
,to = as.Date(date_clean)
,by = "1 day")

sds <- get_subdatasets(file_path)

ndvi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days NDVI", sds)] %>% readGDAL %>% raster
evi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days EVI", sds)] %>% readGDAL %>% raster
# VI Quality may be useful?
vi_quality <- sds[grepl("16DAY_250m_500m_VI:250m 16 days VI Quality", sds)] %>% readGDAL %>% raster

# combine NDVI and EVI into a single stack
r <- stack(ndvi, evi)
names(r) <- c(paste0("ndvi.", date), paste0("evi.", date))

r <- raster::projectRaster(from = r, res = 250, method = 'ngb', crs = proj)
study_area <- spTransform(study_area, CRSobj = proj)

if(identical(crs(study_area), crs(r))) {

m <- mask(r, study_area)
cr <- crop(m, study_area)

pblapply(dates, function(x) {
pblapply(1:nlayers(cr), function(y) {
layer_name <- names(cr[[y]])
var <- gsub("\..*$", "", layer_name)
date <- gsub("-", "\.", x)
writeRaster(cr[[y]]
,filename = paste0("./output/", var, "/", var, ".", date, ".tif")
,format = "GTiff"
,overwrite = TRUE)
})
})
}

pblapply(ndvi_files, function(x) {
processNDVI(file_path = x
,study_area = study_area
)
}
,cl = detectCores()-1
)

ndvi <- stack(list.files(path = "./output/ndvi/", pattern = ".tif$", full.names = T))
plot(ndvi)








share



























    0















    I'm running into some issues with 250m 16-day MOD13Q1 NDVI data using the MODIS package in R.



    Looking at the following raster plot, there are certain days where the NDVI does not match the true surface characteristics. Specifically ndvi.2017.11.01 and ndvi.2018.01.17. Even ndvi.2018.03.06 and ndvi.2018.02.18 are questionable. Is it possible to programmatically exclude these layers? Is there something to gain by using the following sds layer: MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality?



    enter image description here



    Below is the code to produce the above plot:



    # Final Study Area Boundary
    study_area <- readRDS(gzcon(url('http://web.pdx.edu/~porlando/study_area.RDS')))
    # Study CRS
    epsg_26910 <- "+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs "

    # Download Data
    runGdal(product = "MOD13Q1", collection = "006"
    ,tileH = 9, tileV = 4
    ,begin = str_replace_all("2017-09-01", "-", ".")
    ,end = str_replace_all("2018-09-30", "-", ".")
    ,overwrite = TRUE)


    # Process data
    ndvi_path <- "./MODIS/MOD13Q1.006" # 250 m

    ndvi_files <- list.files(path = ndvi_path, pattern = "\.hdf$"
    ,all.files = FALSE, full.names = TRUE
    ,recursive = TRUE
    ,ignore.case = FALSE)


    processNDVI <- function(file_path, study_area = study_area, proj = epsg_26910) {

    cat("n")

    # extract date from file path
    date <- stringr::str_extract(file_path, '[0-9][0-9][0-9][0-9].[0-9][0-9].[0-9][0-9]')
    date_clean <- stringr::str_replace_all(date, "\.", "-")

    # coerce 16 day average to daily composite?
    dates <- seq.Date(from = as.Date(date_clean)
    #,to = as.Date(date_clean) + lubridate::days(15)
    ,to = as.Date(date_clean)
    ,by = "1 day")

    sds <- get_subdatasets(file_path)

    ndvi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days NDVI", sds)] %>% readGDAL %>% raster
    evi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days EVI", sds)] %>% readGDAL %>% raster
    # VI Quality may be useful?
    vi_quality <- sds[grepl("16DAY_250m_500m_VI:250m 16 days VI Quality", sds)] %>% readGDAL %>% raster

    # combine NDVI and EVI into a single stack
    r <- stack(ndvi, evi)
    names(r) <- c(paste0("ndvi.", date), paste0("evi.", date))

    r <- raster::projectRaster(from = r, res = 250, method = 'ngb', crs = proj)
    study_area <- spTransform(study_area, CRSobj = proj)

    if(identical(crs(study_area), crs(r))) {

    m <- mask(r, study_area)
    cr <- crop(m, study_area)

    pblapply(dates, function(x) {
    pblapply(1:nlayers(cr), function(y) {
    layer_name <- names(cr[[y]])
    var <- gsub("\..*$", "", layer_name)
    date <- gsub("-", "\.", x)
    writeRaster(cr[[y]]
    ,filename = paste0("./output/", var, "/", var, ".", date, ".tif")
    ,format = "GTiff"
    ,overwrite = TRUE)
    })
    })
    }

    pblapply(ndvi_files, function(x) {
    processNDVI(file_path = x
    ,study_area = study_area
    )
    }
    ,cl = detectCores()-1
    )

    ndvi <- stack(list.files(path = "./output/ndvi/", pattern = ".tif$", full.names = T))
    plot(ndvi)








    share

























      0












      0








      0








      I'm running into some issues with 250m 16-day MOD13Q1 NDVI data using the MODIS package in R.



      Looking at the following raster plot, there are certain days where the NDVI does not match the true surface characteristics. Specifically ndvi.2017.11.01 and ndvi.2018.01.17. Even ndvi.2018.03.06 and ndvi.2018.02.18 are questionable. Is it possible to programmatically exclude these layers? Is there something to gain by using the following sds layer: MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality?



      enter image description here



      Below is the code to produce the above plot:



      # Final Study Area Boundary
      study_area <- readRDS(gzcon(url('http://web.pdx.edu/~porlando/study_area.RDS')))
      # Study CRS
      epsg_26910 <- "+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs "

      # Download Data
      runGdal(product = "MOD13Q1", collection = "006"
      ,tileH = 9, tileV = 4
      ,begin = str_replace_all("2017-09-01", "-", ".")
      ,end = str_replace_all("2018-09-30", "-", ".")
      ,overwrite = TRUE)


      # Process data
      ndvi_path <- "./MODIS/MOD13Q1.006" # 250 m

      ndvi_files <- list.files(path = ndvi_path, pattern = "\.hdf$"
      ,all.files = FALSE, full.names = TRUE
      ,recursive = TRUE
      ,ignore.case = FALSE)


      processNDVI <- function(file_path, study_area = study_area, proj = epsg_26910) {

      cat("n")

      # extract date from file path
      date <- stringr::str_extract(file_path, '[0-9][0-9][0-9][0-9].[0-9][0-9].[0-9][0-9]')
      date_clean <- stringr::str_replace_all(date, "\.", "-")

      # coerce 16 day average to daily composite?
      dates <- seq.Date(from = as.Date(date_clean)
      #,to = as.Date(date_clean) + lubridate::days(15)
      ,to = as.Date(date_clean)
      ,by = "1 day")

      sds <- get_subdatasets(file_path)

      ndvi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days NDVI", sds)] %>% readGDAL %>% raster
      evi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days EVI", sds)] %>% readGDAL %>% raster
      # VI Quality may be useful?
      vi_quality <- sds[grepl("16DAY_250m_500m_VI:250m 16 days VI Quality", sds)] %>% readGDAL %>% raster

      # combine NDVI and EVI into a single stack
      r <- stack(ndvi, evi)
      names(r) <- c(paste0("ndvi.", date), paste0("evi.", date))

      r <- raster::projectRaster(from = r, res = 250, method = 'ngb', crs = proj)
      study_area <- spTransform(study_area, CRSobj = proj)

      if(identical(crs(study_area), crs(r))) {

      m <- mask(r, study_area)
      cr <- crop(m, study_area)

      pblapply(dates, function(x) {
      pblapply(1:nlayers(cr), function(y) {
      layer_name <- names(cr[[y]])
      var <- gsub("\..*$", "", layer_name)
      date <- gsub("-", "\.", x)
      writeRaster(cr[[y]]
      ,filename = paste0("./output/", var, "/", var, ".", date, ".tif")
      ,format = "GTiff"
      ,overwrite = TRUE)
      })
      })
      }

      pblapply(ndvi_files, function(x) {
      processNDVI(file_path = x
      ,study_area = study_area
      )
      }
      ,cl = detectCores()-1
      )

      ndvi <- stack(list.files(path = "./output/ndvi/", pattern = ".tif$", full.names = T))
      plot(ndvi)








      share














      I'm running into some issues with 250m 16-day MOD13Q1 NDVI data using the MODIS package in R.



      Looking at the following raster plot, there are certain days where the NDVI does not match the true surface characteristics. Specifically ndvi.2017.11.01 and ndvi.2018.01.17. Even ndvi.2018.03.06 and ndvi.2018.02.18 are questionable. Is it possible to programmatically exclude these layers? Is there something to gain by using the following sds layer: MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality?



      enter image description here



      Below is the code to produce the above plot:



      # Final Study Area Boundary
      study_area <- readRDS(gzcon(url('http://web.pdx.edu/~porlando/study_area.RDS')))
      # Study CRS
      epsg_26910 <- "+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs "

      # Download Data
      runGdal(product = "MOD13Q1", collection = "006"
      ,tileH = 9, tileV = 4
      ,begin = str_replace_all("2017-09-01", "-", ".")
      ,end = str_replace_all("2018-09-30", "-", ".")
      ,overwrite = TRUE)


      # Process data
      ndvi_path <- "./MODIS/MOD13Q1.006" # 250 m

      ndvi_files <- list.files(path = ndvi_path, pattern = "\.hdf$"
      ,all.files = FALSE, full.names = TRUE
      ,recursive = TRUE
      ,ignore.case = FALSE)


      processNDVI <- function(file_path, study_area = study_area, proj = epsg_26910) {

      cat("n")

      # extract date from file path
      date <- stringr::str_extract(file_path, '[0-9][0-9][0-9][0-9].[0-9][0-9].[0-9][0-9]')
      date_clean <- stringr::str_replace_all(date, "\.", "-")

      # coerce 16 day average to daily composite?
      dates <- seq.Date(from = as.Date(date_clean)
      #,to = as.Date(date_clean) + lubridate::days(15)
      ,to = as.Date(date_clean)
      ,by = "1 day")

      sds <- get_subdatasets(file_path)

      ndvi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days NDVI", sds)] %>% readGDAL %>% raster
      evi <- sds[grepl("16DAY_250m_500m_VI:250m 16 days EVI", sds)] %>% readGDAL %>% raster
      # VI Quality may be useful?
      vi_quality <- sds[grepl("16DAY_250m_500m_VI:250m 16 days VI Quality", sds)] %>% readGDAL %>% raster

      # combine NDVI and EVI into a single stack
      r <- stack(ndvi, evi)
      names(r) <- c(paste0("ndvi.", date), paste0("evi.", date))

      r <- raster::projectRaster(from = r, res = 250, method = 'ngb', crs = proj)
      study_area <- spTransform(study_area, CRSobj = proj)

      if(identical(crs(study_area), crs(r))) {

      m <- mask(r, study_area)
      cr <- crop(m, study_area)

      pblapply(dates, function(x) {
      pblapply(1:nlayers(cr), function(y) {
      layer_name <- names(cr[[y]])
      var <- gsub("\..*$", "", layer_name)
      date <- gsub("-", "\.", x)
      writeRaster(cr[[y]]
      ,filename = paste0("./output/", var, "/", var, ".", date, ".tif")
      ,format = "GTiff"
      ,overwrite = TRUE)
      })
      })
      }

      pblapply(ndvi_files, function(x) {
      processNDVI(file_path = x
      ,study_area = study_area
      )
      }
      ,cl = detectCores()-1
      )

      ndvi <- stack(list.files(path = "./output/ndvi/", pattern = ".tif$", full.names = T))
      plot(ndvi)






      r modis ndvi





      share












      share










      share



      share










      asked 8 mins ago









      spacedSparkingspacedSparking

      1658




      1658






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "79"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f317090%2fr-modis-mod13q1-quality-issues%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Geographic Information Systems Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f317090%2fr-modis-mod13q1-quality-issues%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Щит и меч (фильм) Содержание Названия серий | Сюжет |...

          Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

          Meter-Bus Содержание Параметры шины | Стандартизация |...