Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara ...
Ring Automorphisms that fix 1.
How to react to hostile behavior from a senior developer?
Is it fair for a professor to grade us on the possession of past papers?
What does an IRS interview request entail when called in to verify expenses for a sole proprietor small business?
Why is my conclusion inconsistent with the van't Hoff equation?
Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?
How to answer "Have you ever been terminated?"
Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?
In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?
How to bypass password on Windows XP account?
Naming the result of a source block
How can I make names more distinctive without making them longer?
Why do people hide their license plates in the EU?
Extract all GPU name, model and GPU ram
Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?
What causes the vertical darker bands in my photo?
How to deal with a team lead who never gives me credit?
How come Sam didn't become Lord of Horn Hill?
What are the pros and cons of Aerospike nosecones?
What exactly is a "Meth" in Altered Carbon?
Storing hydrofluoric acid before the invention of plastics
How to tell that you are a giant?
How do I keep my slimes from escaping their pens?
Why are Kinder Surprise Eggs illegal in the USA?
Ring Automorphisms that fix 1.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbb{R}^n$group of automorphisms of the ring $mathbb{Z}timesmathbb{Z}$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbb{Q}[sqrt[3]{5}]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbb{Q}(sqrt[4]{2})/mathbb{Q}$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.
Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:
$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.
Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:
$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.
Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:
$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.
Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:
$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
abstract-algebra ring-theory field-theory galois-theory
asked 3 hours ago
Solarflare0Solarflare0
9813
9813
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$
2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
implies
phi(frac{3}{2}) =frac{3}{2}
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.
For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
implies
phi(frac{3}{2}) =frac{3}{2}
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
implies
phi(frac{3}{2}) =frac{3}{2}
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
implies
phi(frac{3}{2}) =frac{3}{2}
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
$$
2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
implies
phi(frac{3}{2}) =frac{3}{2}
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
answered 3 hours ago
lhflhf
168k11172405
168k11172405
add a comment |
add a comment |
$begingroup$
Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.
For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.
For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.
For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.
$endgroup$
Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.
For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.
answered 2 hours ago
60056005
37.1k752127
37.1k752127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown