Conditions when a permutation matrix is symmetric Announcing the arrival of Valued Associate...
Lagrange four-squares theorem --- deterministic complexity
Misunderstanding of Sylow theory
Google .dev domain strangely redirects to https
The Nth Gryphon Number
Semigroups with no morphisms between them
How does Belgium enforce obligatory attendance in elections?
Is multiple magic items in one inherently imbalanced?
Time evolution of a Gaussian wave packet, why convert to k-space?
Trademark violation for app?
Drawing spherical mirrors
If the probability of a dog barking one or more times in a given hour is 84%, then what is the probability of a dog barking in 30 minutes?
Crossing US/Canada Border for less than 24 hours
Co-worker has annoying ringtone
How fail-safe is nr as stop bytes?
Do I really need to have a message in a novel to appeal to readers?
What does it mean that physics no longer uses mechanical models to describe phenomena?
Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?
What does 丫 mean? 丫是什么意思?
How do I find out the mythology and history of my Fortress?
What is an "asse" in Elizabethan English?
Why is it faster to reheat something than it is to cook it?
Getting prompted for verification code but where do I put it in?
Sum letters are not two different
If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?
Conditions when a permutation matrix is symmetric
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Symmetric Permutation Matrixeigendecomposition of a symmetric singular matrix and definition of unitary matrixNot getting the right answer for a matrix in reduced column echelon form.Prove or disprove that trace of matrix $X$ is zeroSpectral radius of the product of a right stochastic matrix and hermitian matrixReducible matrices and strongly connected graphsEigenvalues and eigenspaces in a symmetric matrixbinary indexing matrixMatrix permutation-similarity invariantsMaximal diagonalization of a matrix by permutation matricesA very interesting property of symmetric positive definite matrix. Need proof! (Citation needed)
$begingroup$
I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.
Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.
As we know, a permutation matrix is orthogonal, i.e., $E^T=E^{-1}$. I am interested in when it is symmetric, i.e., $E^T=E^{-1} = E$
Suppose
- Start from an identity matrix $I_n$.
$n$ can be even or odd number.- Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_{ii}=E_{jj}=0$ and $E_{ij}=E_{ji}=1$.
- Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.
One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get
$$begin{bmatrix}0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 end{bmatrix},$$
which is not symmetric. In this case, I repeat $2$ in each suit.
Is the above correct? Or I miss some key assumptions?
linear-algebra matrices permutations
$endgroup$
add a comment |
$begingroup$
I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.
Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.
As we know, a permutation matrix is orthogonal, i.e., $E^T=E^{-1}$. I am interested in when it is symmetric, i.e., $E^T=E^{-1} = E$
Suppose
- Start from an identity matrix $I_n$.
$n$ can be even or odd number.- Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_{ii}=E_{jj}=0$ and $E_{ij}=E_{ji}=1$.
- Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.
One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get
$$begin{bmatrix}0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 end{bmatrix},$$
which is not symmetric. In this case, I repeat $2$ in each suit.
Is the above correct? Or I miss some key assumptions?
linear-algebra matrices permutations
$endgroup$
1
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
1
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago
add a comment |
$begingroup$
I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.
Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.
As we know, a permutation matrix is orthogonal, i.e., $E^T=E^{-1}$. I am interested in when it is symmetric, i.e., $E^T=E^{-1} = E$
Suppose
- Start from an identity matrix $I_n$.
$n$ can be even or odd number.- Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_{ii}=E_{jj}=0$ and $E_{ij}=E_{ji}=1$.
- Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.
One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get
$$begin{bmatrix}0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 end{bmatrix},$$
which is not symmetric. In this case, I repeat $2$ in each suit.
Is the above correct? Or I miss some key assumptions?
linear-algebra matrices permutations
$endgroup$
I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.
Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.
As we know, a permutation matrix is orthogonal, i.e., $E^T=E^{-1}$. I am interested in when it is symmetric, i.e., $E^T=E^{-1} = E$
Suppose
- Start from an identity matrix $I_n$.
$n$ can be even or odd number.- Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_{ii}=E_{jj}=0$ and $E_{ij}=E_{ji}=1$.
- Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.
One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get
$$begin{bmatrix}0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 end{bmatrix},$$
which is not symmetric. In this case, I repeat $2$ in each suit.
Is the above correct? Or I miss some key assumptions?
linear-algebra matrices permutations
linear-algebra matrices permutations
asked 4 hours ago
sleeve chensleeve chen
3,20042256
3,20042256
1
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
1
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago
add a comment |
1
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
1
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago
1
1
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
1
1
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You’re correct!
We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on ${1,dots,n}$ and vice versa.
Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_{1i}=e_{i1}$ by symmetry. Thus $E$ swaps the first and the $i^{th}$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.
$endgroup$
add a comment |
$begingroup$
As you have noted condition for a permutation matrix $E$ to be symmetric
is that $E^{-1}=E$, and this condition can be expressed as $E^2=I$.
Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)
So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).
In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194162%2fconditions-when-a-permutation-matrix-is-symmetric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You’re correct!
We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on ${1,dots,n}$ and vice versa.
Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_{1i}=e_{i1}$ by symmetry. Thus $E$ swaps the first and the $i^{th}$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.
$endgroup$
add a comment |
$begingroup$
You’re correct!
We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on ${1,dots,n}$ and vice versa.
Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_{1i}=e_{i1}$ by symmetry. Thus $E$ swaps the first and the $i^{th}$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.
$endgroup$
add a comment |
$begingroup$
You’re correct!
We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on ${1,dots,n}$ and vice versa.
Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_{1i}=e_{i1}$ by symmetry. Thus $E$ swaps the first and the $i^{th}$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.
$endgroup$
You’re correct!
We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on ${1,dots,n}$ and vice versa.
Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_{1i}=e_{i1}$ by symmetry. Thus $E$ swaps the first and the $i^{th}$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.
answered 2 hours ago
Santana AftonSantana Afton
3,1922730
3,1922730
add a comment |
add a comment |
$begingroup$
As you have noted condition for a permutation matrix $E$ to be symmetric
is that $E^{-1}=E$, and this condition can be expressed as $E^2=I$.
Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)
So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).
In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).
$endgroup$
add a comment |
$begingroup$
As you have noted condition for a permutation matrix $E$ to be symmetric
is that $E^{-1}=E$, and this condition can be expressed as $E^2=I$.
Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)
So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).
In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).
$endgroup$
add a comment |
$begingroup$
As you have noted condition for a permutation matrix $E$ to be symmetric
is that $E^{-1}=E$, and this condition can be expressed as $E^2=I$.
Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)
So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).
In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).
$endgroup$
As you have noted condition for a permutation matrix $E$ to be symmetric
is that $E^{-1}=E$, and this condition can be expressed as $E^2=I$.
Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)
So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).
In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).
answered 2 hours ago
P VanchinathanP Vanchinathan
15.7k12236
15.7k12236
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194162%2fconditions-when-a-permutation-matrix-is-symmetric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
4 hours ago
1
$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
4 hours ago