Calculate the number of points of an elliptic curve in medium Weierstrass form over finite fieldProving the...

Salesforce package error error “You can't specify version for namespace sf_com_apps because this namespace is not installed to your organization.”

Why was Lupin comfortable with saying Voldemort's name?

Nested word series [humans only]

Convert exam marks to overall grade

How can a school be getting an epidemic of whooping cough if most of the students are vaccinated?

Cat is tipping over bed-side lamps during the night

Is there a weight limit to Feather Fall?

Why do neural networks need so many training examples to perform?

Dilemma of explaining to interviewer that he is the reason for declining second interview

Why did Democrats in the Senate oppose the Born-Alive Abortion Survivors Protection Act (2019 S.130)?

False written accusations not made public - is there law to cover this?

What is the wife of a henpecked husband called?

How would an AI self awareness kill switch work?

Why is it that Bernie Sanders is always called a "socialist"?

Why exactly do action photographers need high fps burst cameras?

When can a QA tester start his job?

Why zero tolerance on nudity in space?

Odd 74HCT1G125 behaviour

Is it possible to grant users sftp access without shell access? If yes, how is it implemented?

Do theoretical physics suggest that gravity is the exchange of gravitons or deformation/bending of spacetime?

Making him into a bully (how to show mild violence)

What is the purpose of easy combat scenarios that don't need resource expenditure?

What is a good reason for every spaceship to carry a weapon on board?

If I delete my router's history can my ISP still provide it to my parents?



Calculate the number of points of an elliptic curve in medium Weierstrass form over finite field


Proving the condition for two elliptic curves given in Weierstrass form to be isomorphicEndomorphism Ring of an Elliptic Curve over Finite FieldComputation of the 2-torsion group of an elliptic curveHasse's Theorem for Elliptic Curves over Finite Fields + proof clarificationTopics in elliptic curves over finite fieldsElliptic curve $y^2= x^3 + x$ over the finite field $mathbb{F}_p$ with $p geq 3$.Addition of points on elliptic curves over a finite fieldAdding points on an elliptic curveDirect sum of two points on an elliptic curveWeierstrass Form of an Elliptic Curve













5












$begingroup$


Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










share|cite|improve this question









$endgroup$

















    5












    $begingroup$


    Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










    share|cite|improve this question









    $endgroup$















      5












      5








      5





      $begingroup$


      Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










      share|cite|improve this question









      $endgroup$




      Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.







      number-theory elliptic-curves






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      NickyNicky

      736




      736






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



          magma code



               F := FiniteField(3); A<x,y> := AffineSpace(F,2);
          C := Curve(A,y^2-x^3-x^2-x-1);
          t :=3+1- #Points(ProjectiveClosure(C));
          P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

          for k in [2..10] do
          Ck := BaseChange(C,FiniteField(3^k));
          Ek := #Points(ProjectiveClosure(Ck));
          [Ek,3^k+1-a^k-aa^k];
          end for;


          To obtain the minimal polynomial of endomorphisms :



          Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
          $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3129575%2fcalculate-the-number-of-points-of-an-elliptic-curve-in-medium-weierstrass-form-o%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



            magma code



                 F := FiniteField(3); A<x,y> := AffineSpace(F,2);
            C := Curve(A,y^2-x^3-x^2-x-1);
            t :=3+1- #Points(ProjectiveClosure(C));
            P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

            for k in [2..10] do
            Ck := BaseChange(C,FiniteField(3^k));
            Ek := #Points(ProjectiveClosure(Ck));
            [Ek,3^k+1-a^k-aa^k];
            end for;


            To obtain the minimal polynomial of endomorphisms :



            Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
            $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$

              Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



              magma code



                   F := FiniteField(3); A<x,y> := AffineSpace(F,2);
              C := Curve(A,y^2-x^3-x^2-x-1);
              t :=3+1- #Points(ProjectiveClosure(C));
              P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

              for k in [2..10] do
              Ck := BaseChange(C,FiniteField(3^k));
              Ek := #Points(ProjectiveClosure(Ck));
              [Ek,3^k+1-a^k-aa^k];
              end for;


              To obtain the minimal polynomial of endomorphisms :



              Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
              $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$

                Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



                magma code



                     F := FiniteField(3); A<x,y> := AffineSpace(F,2);
                C := Curve(A,y^2-x^3-x^2-x-1);
                t :=3+1- #Points(ProjectiveClosure(C));
                P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

                for k in [2..10] do
                Ck := BaseChange(C,FiniteField(3^k));
                Ek := #Points(ProjectiveClosure(Ck));
                [Ek,3^k+1-a^k-aa^k];
                end for;


                To obtain the minimal polynomial of endomorphisms :



                Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
                $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






                share|cite|improve this answer











                $endgroup$



                Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



                magma code



                     F := FiniteField(3); A<x,y> := AffineSpace(F,2);
                C := Curve(A,y^2-x^3-x^2-x-1);
                t :=3+1- #Points(ProjectiveClosure(C));
                P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

                for k in [2..10] do
                Ck := BaseChange(C,FiniteField(3^k));
                Ek := #Points(ProjectiveClosure(Ck));
                [Ek,3^k+1-a^k-aa^k];
                end for;


                To obtain the minimal polynomial of endomorphisms :



                Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
                $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 16 mins ago

























                answered 3 hours ago









                reunsreuns

                20.7k21148




                20.7k21148






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3129575%2fcalculate-the-number-of-points-of-an-elliptic-curve-in-medium-weierstrass-form-o%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                    Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

                    Meter-Bus Содержание Параметры шины | Стандартизация |...