Calculating Wattage for Resistor in High Frequency Application?Resistor wattage?Resistor wattage for HDMI...
Is this toilet slogan correct usage of the English language?
When were female captains banned from Starfleet?
Melting point of aspirin, contradicting sources
Which one is correct as adjective “protruding” or “protruded”?
If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?
Why did the EU agree to delay the Brexit deadline?
What is this called? Old film camera viewer?
How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?
Should I stop contributing to retirement accounts?
Creepy dinosaur pc game identification
What was this official D&D 3.5e Lovecraft-flavored rulebook?
copy and scale one figure (wheel)
How do you make your own symbol when Detexify fails?
What if a revenant (monster) gains fire resistance?
How do I find all files that end with a dot
Closed-form expression for certain product
GraphicsGrid with a Label for each Column and Row
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
Approximating irrational number to rational number
C++ debug/print custom type with GDB : the case of nlohmann json library
Drawing ramified coverings with tikz
How much character growth crosses the line into breaking the character
Why is so much work done on numerical verification of the Riemann Hypothesis?
Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?
Calculating Wattage for Resistor in High Frequency Application?
Resistor wattage?Resistor wattage for HDMI hackTLC5940NT + 12v 5050 led stripImprove Rise Time on 1Hz SignalDetermining the surge duration of a double exponential transient?Resistor surge ratingZero Crossing Detection of ~ 400 kHz Signal with MCUpower supply remote sense protection resistor value?calculating maximum sense speed of amplified phototransistor circuitMay I use a smaller wattage resistor as mosfet's gate driver for a very short time?
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
add a comment |
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago
add a comment |
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
resistors high-frequency
edited 5 hours ago
Transistor
87.1k785189
87.1k785189
asked 5 hours ago
Israr SayedIsrar Sayed
204
204
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago
add a comment |
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
return StackExchange.using("schematics", function () {
StackExchange.schematics.init();
});
}, "cicuitlab");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "135"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
edited 3 hours ago
answered 4 hours ago
Dave Tweed♦Dave Tweed
122k9152263
122k9152263
add a comment |
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
4 hours ago