Shortcut for value of this indefinite integral?How can this indefinite integral be solved without partial...
Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?
How can a function with a hole (removable discontinuity) equal a function with no hole?
Efficient way to transport a Stargate
Crossing the line between justified force and brutality
Customer Requests (Sometimes) Drive Me Bonkers!
Failed to fetch jessie backports repository
Sort a list by elements of another list
Is a stroke of luck acceptable after a series of unfavorable events?
Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?
Method to test if a number is a perfect power?
Would a high gravity rocky planet be guaranteed to have an atmosphere?
Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?
How did Doctor Strange see the winning outcome in Avengers: Infinity War?
Is there a problem with hiding "forgot password" until it's needed?
Term for the "extreme-extension" version of a straw man fallacy?
India just shot down a satellite from the ground. At what altitude range is the resulting debris field?
Is expanding the research of a group into machine learning as a PhD student risky?
What is the best translation for "slot" in the context of multiplayer video games?
Pre-amplifier input protection
Why escape if the_content isnt?
when is out of tune ok?
How can I kill an app using Terminal?
What can we do to stop prior company from asking us questions?
A Rare Riley Riddle
Shortcut for value of this indefinite integral?
How can this indefinite integral be solved without partial fractions?Question about indefinite integral with square rootIndefinite Integral of $n$-th power of Quadratic DenominatorIndefinite integral of a rational function problem…Need help in indefinite integral eliminationWeird indefinite integral situationHow to find the value of this indefinite integral?Indefinite integral of $arctan(x)$, why consider $1cdot dx$?Indefinite integral with polynomial function factorizingHow do I evaluate this indefinite integral?
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited 1 hour ago
Hema
asked 3 hours ago
HemaHema
6531213
6531213
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago
|
show 6 more comments
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago
2
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$
Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$
Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.
$endgroup$
With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.
answered 3 hours ago
Catalin ZaraCatalin Zara
3,817514
3,817514
add a comment |
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$
Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$
Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$
Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$
Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$
Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$
Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$
$endgroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$
Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$
Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$
answered 2 hours ago
Thomas ShelbyThomas Shelby
4,4992726
4,4992726
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago
$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago