How do you determine if the following series converges?Convergence and exponentialsDetermine if the series...

How do I narratively explain how in-game circumstances do not mechanically allow a PC to instantly kill an NPC?

What is an explicit bijection in combinatorics?

Minimum Viable Product for RTS game?

Do the speed limit reductions due to pollution also apply to electric cars in France?

Coworker asking me to not bring cakes due to self control issue. What should I do?

Piping Multiple Numbers into Sed

Disk space full during insert, what happens?

Coworker is trying to get me to sign his petition to run for office. How to decline politely?

bash aliases do not expand even with shopt expand_aliases

Can someone explain European graduate programs in STEM fields?

Boss asked me to sign a resignation paper without a date on it along with my new contract

Does しかたない imply disappointment?

What is the reward?

Why do single electrical receptacles exist?

If I tried and failed to start my own business, how do I apply for a job without job experience?

Was the Spartan by Mimic Systems a real product?

How do I make my single-minded character more interested in the main story?

Short story about a man betting a group he could tell a story, and one of them would disappear and the others would not notice

How can I handle players killing my NPC outside of combat?

How do I fight with Heavy Armor as a Wizard with Tenser's Transformation?

Is there redundancy between a US Passport Card and an Enhanced Driver's License?

How can I deal with my coworker having zero social cues?

How do I add a strong "onion flavor" to the biryani (in restaurant style)?

Is Screenshot Time-tracking Common?



How do you determine if the following series converges?


Convergence and exponentialsDetermine if the series converges/divergesHow to prove this series converges $sum_{n=2}^infty frac{ln(n)}{n^{3/2}}$?How to determine if this series converges?Divergence test for the series $sum_{n=1}^{infty} (sqrt[n]{2n^2}-1)^n$Determine whether the series converges or diverges?My approach to determine if the following series is convergentHow to prove that $sum_{n=1}^{infty} frac{(log (n))^2}{n^2}$ converges?Determine whether the series converges or diverges.Does $displaystylesum_{n=1}^{infty}sinleft(displaystylefrac{1}{sqrt{n}}right)$ converge?Find all values of $k$ such that the series with terms $k^n / n^k$ converges.













3












$begingroup$


$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is susceptible to the same approach as my answer to a different question.
    $endgroup$
    – T. Bongers
    35 mins ago










  • $begingroup$
    Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
    $endgroup$
    – JavaMan
    29 mins ago


















3












$begingroup$


$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is susceptible to the same approach as my answer to a different question.
    $endgroup$
    – T. Bongers
    35 mins ago










  • $begingroup$
    Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
    $endgroup$
    – JavaMan
    29 mins ago
















3












3








3





$begingroup$


$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?










share|cite|improve this question









$endgroup$




$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?







convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 45 mins ago









JayJay

334




334












  • $begingroup$
    This is susceptible to the same approach as my answer to a different question.
    $endgroup$
    – T. Bongers
    35 mins ago










  • $begingroup$
    Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
    $endgroup$
    – JavaMan
    29 mins ago




















  • $begingroup$
    This is susceptible to the same approach as my answer to a different question.
    $endgroup$
    – T. Bongers
    35 mins ago










  • $begingroup$
    Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
    $endgroup$
    – JavaMan
    29 mins ago


















$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
35 mins ago




$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
35 mins ago












$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
29 mins ago






$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
29 mins ago












4 Answers
4






active

oldest

votes


















0












$begingroup$

HINT:



Note that $$left( 1-frac1k right)^kle e^{-1}$$



Can you finish?






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    The root test works. Consider
    $$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
    hence the series converges.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      The ratio test is also interesting
      $$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
      $$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$



      Develop as a Taylor series for large values of $k$ to get
      $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
      Continue with Taylor
      $$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        $begin{array}\
        (1-frac1{k})^{k^2}
        &=(frac{k-1}{k})^{k^2}\
        &=dfrac1{(frac{k}{k-1})^{k^2}}\
        &=dfrac1{(1+frac{1}{k-1})^{k^2}}\
        &=dfrac1{((1+frac{1}{k-1})^{k})^k}\
        &<dfrac1{(1+frac{k}{k-1})^k}
        qquadtext{by Bernoulli}\
        &=dfrac1{(frac{2k-1}{k-1})^k}\
        &<dfrac1{(frac{2k-2}{k-1})^k}\
        &=dfrac1{2^k}\
        end{array}
        $



        and the sum of this converges.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123320%2fhow-do-you-determine-if-the-following-series-converges%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          HINT:



          Note that $$left( 1-frac1k right)^kle e^{-1}$$



          Can you finish?






          share|cite|improve this answer









          $endgroup$


















            0












            $begingroup$

            HINT:



            Note that $$left( 1-frac1k right)^kle e^{-1}$$



            Can you finish?






            share|cite|improve this answer









            $endgroup$
















              0












              0








              0





              $begingroup$

              HINT:



              Note that $$left( 1-frac1k right)^kle e^{-1}$$



              Can you finish?






              share|cite|improve this answer









              $endgroup$



              HINT:



              Note that $$left( 1-frac1k right)^kle e^{-1}$$



              Can you finish?







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 30 mins ago









              Mark ViolaMark Viola

              132k1277174




              132k1277174























                  3












                  $begingroup$

                  The root test works. Consider
                  $$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
                  hence the series converges.






                  share|cite|improve this answer









                  $endgroup$


















                    3












                    $begingroup$

                    The root test works. Consider
                    $$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
                    hence the series converges.






                    share|cite|improve this answer









                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      The root test works. Consider
                      $$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
                      hence the series converges.






                      share|cite|improve this answer









                      $endgroup$



                      The root test works. Consider
                      $$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
                      hence the series converges.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 34 mins ago









                      Theo BenditTheo Bendit

                      18.7k12253




                      18.7k12253























                          0












                          $begingroup$

                          The ratio test is also interesting
                          $$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
                          $$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$



                          Develop as a Taylor series for large values of $k$ to get
                          $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
                          Continue with Taylor
                          $$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            The ratio test is also interesting
                            $$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
                            $$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$



                            Develop as a Taylor series for large values of $k$ to get
                            $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
                            Continue with Taylor
                            $$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              The ratio test is also interesting
                              $$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
                              $$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$



                              Develop as a Taylor series for large values of $k$ to get
                              $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
                              Continue with Taylor
                              $$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$






                              share|cite|improve this answer









                              $endgroup$



                              The ratio test is also interesting
                              $$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
                              $$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$



                              Develop as a Taylor series for large values of $k$ to get
                              $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
                              Continue with Taylor
                              $$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 21 mins ago









                              Claude LeiboviciClaude Leibovici

                              122k1157134




                              122k1157134























                                  0












                                  $begingroup$

                                  $begin{array}\
                                  (1-frac1{k})^{k^2}
                                  &=(frac{k-1}{k})^{k^2}\
                                  &=dfrac1{(frac{k}{k-1})^{k^2}}\
                                  &=dfrac1{(1+frac{1}{k-1})^{k^2}}\
                                  &=dfrac1{((1+frac{1}{k-1})^{k})^k}\
                                  &<dfrac1{(1+frac{k}{k-1})^k}
                                  qquadtext{by Bernoulli}\
                                  &=dfrac1{(frac{2k-1}{k-1})^k}\
                                  &<dfrac1{(frac{2k-2}{k-1})^k}\
                                  &=dfrac1{2^k}\
                                  end{array}
                                  $



                                  and the sum of this converges.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    $begin{array}\
                                    (1-frac1{k})^{k^2}
                                    &=(frac{k-1}{k})^{k^2}\
                                    &=dfrac1{(frac{k}{k-1})^{k^2}}\
                                    &=dfrac1{(1+frac{1}{k-1})^{k^2}}\
                                    &=dfrac1{((1+frac{1}{k-1})^{k})^k}\
                                    &<dfrac1{(1+frac{k}{k-1})^k}
                                    qquadtext{by Bernoulli}\
                                    &=dfrac1{(frac{2k-1}{k-1})^k}\
                                    &<dfrac1{(frac{2k-2}{k-1})^k}\
                                    &=dfrac1{2^k}\
                                    end{array}
                                    $



                                    and the sum of this converges.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      $begin{array}\
                                      (1-frac1{k})^{k^2}
                                      &=(frac{k-1}{k})^{k^2}\
                                      &=dfrac1{(frac{k}{k-1})^{k^2}}\
                                      &=dfrac1{(1+frac{1}{k-1})^{k^2}}\
                                      &=dfrac1{((1+frac{1}{k-1})^{k})^k}\
                                      &<dfrac1{(1+frac{k}{k-1})^k}
                                      qquadtext{by Bernoulli}\
                                      &=dfrac1{(frac{2k-1}{k-1})^k}\
                                      &<dfrac1{(frac{2k-2}{k-1})^k}\
                                      &=dfrac1{2^k}\
                                      end{array}
                                      $



                                      and the sum of this converges.






                                      share|cite|improve this answer









                                      $endgroup$



                                      $begin{array}\
                                      (1-frac1{k})^{k^2}
                                      &=(frac{k-1}{k})^{k^2}\
                                      &=dfrac1{(frac{k}{k-1})^{k^2}}\
                                      &=dfrac1{(1+frac{1}{k-1})^{k^2}}\
                                      &=dfrac1{((1+frac{1}{k-1})^{k})^k}\
                                      &<dfrac1{(1+frac{k}{k-1})^k}
                                      qquadtext{by Bernoulli}\
                                      &=dfrac1{(frac{2k-1}{k-1})^k}\
                                      &<dfrac1{(frac{2k-2}{k-1})^k}\
                                      &=dfrac1{2^k}\
                                      end{array}
                                      $



                                      and the sum of this converges.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 10 mins ago









                                      marty cohenmarty cohen

                                      73.8k549128




                                      73.8k549128






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123320%2fhow-do-you-determine-if-the-following-series-converges%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                                          Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

                                          Meter-Bus Содержание Параметры шины | Стандартизация |...