How to find data orientation atfer an ICAAutomating roof orientation detection from satellite imagery?Python...

Ramanujan's radical and how we define an infinite nested radical

Rudeness by being polite

Why is Shelob considered evil?

Exploding Numbers

Badly designed reimbursement form. What does that say about the company?

Why are `&array` and `array` pointing to the same address?

How bad is a Computer Science course that doesn't teach Design Patterns?

How can a kingdom keep the secret of a missing monarch from the public?

Does changing "sa" password require a SQL restart (in mixed mode)?

How do I add a strong "onion flavor" to the biryani (in restaurant style)?

Stream.findFirst different than Optional.of?

What does an unprocessed RAW file look like?

Is Apex Sometimes Case Sensitive?

Arizona laws regarding ownership of ground glassware for chemistry usage

Microphone on Mars

Have the conservatives lost the working majority and if so, what does this mean?

Can a planet be tidally unlocked?

How can guns be countered by melee combat without raw-ability or exceptional explanations?

Coworker is trying to get me to sign his petition to run for office. How to decline politely?

What did Putin say about a US deep state in his state-of-the-nation speech; what has he said in the past?

How should I ship cards?

The Late Queen Gives in to Remorse - Reverse Hangman

What is formjacking?

Relation between roots and coefficients - manipulation of identities



How to find data orientation atfer an ICA


Automating roof orientation detection from satellite imagery?Python script to read CAD data to find polygon extentsFind and Replace data source scriptHow to find and apply reprojection parameters?how to find close and parallel linesGrass python shell can't find my dataWhere do I find the covariance matrix in Erdas Imagine?PostGIS polygon edge analysis (orientation, edge length)How to find coordinates of opposite vertices in a boundingboxHow to find how grass's r.viewshed works programmatically?













1















I'm trying to cluster tractor sensor data by row in a python script. For the moment I'm trying to find data orientation after a FastICA (sklearn), vertical or horizontal. Because for same data, FastICA can orientate results differently.



Same data, different orientation



Until now, I was searching for an empirical rule with the 2 matrix FastICA().components_ and FastICA().mixing_. But I found nothing that works.



Is somebody have an better idea?



Here is data and my code below:



import geopandas as gpd
import numpy as np

shp_name = 'rawdata379'

shp_source = ('/home/jovyan/scripts/physiocap/Test_Data/{}.shp'.format(shp_name))
source = gpd.read_file(shp_source)
source = source.to_crs({'init' :'epsg:3857'})

src_coord = source[['LONGITUDE', 'LATITUDE']]

from sklearn.decomposition import FastICA
import pandas as pd
from shapely.geometry import Point

rng = np.random.RandomState(42)

pca = FastICA(n_components=2, algorithm='parallel', whiten=True, max_iter=100)
src_coord_pca = pca.fit_transform(src_coord)

src_coord_pca_df = pd.DataFrame(src_coord_pca).rename(columns={0:'X', 1:'Y'})
src_coord_pca_df['geometry'] = list(zip(src_coord_pca_df['X'], src_coord_pca_df['Y']))
src_coord_pca_df['geometry'] = src_coord_pca_df['geometry'].apply(Point)
src_coord_pca_gdf = gpd.GeoDataFrame(src_coord_pca_df, geometry='geometry')
src_coord_pca_gdf.plot(figsize=(9, 9))

compo, feat = pca.components_
print('compo :', compo)
print('feat :', feat)

feat, compo = pca.mixing_
print('compo :', compo)
print('feat :', feat)


#trial of empirical rule
if (pca.components_[0][0] > 0 != pca.components_[0][1] > 0):
print('vertical')
src_coord_pca_df = pd.DataFrame(src_coord_pca)[0]

else:
print('horizontal')
src_coord_pca_df = pd.DataFrame(src_coord_pca)[1]









share|improve this question



























    1















    I'm trying to cluster tractor sensor data by row in a python script. For the moment I'm trying to find data orientation after a FastICA (sklearn), vertical or horizontal. Because for same data, FastICA can orientate results differently.



    Same data, different orientation



    Until now, I was searching for an empirical rule with the 2 matrix FastICA().components_ and FastICA().mixing_. But I found nothing that works.



    Is somebody have an better idea?



    Here is data and my code below:



    import geopandas as gpd
    import numpy as np

    shp_name = 'rawdata379'

    shp_source = ('/home/jovyan/scripts/physiocap/Test_Data/{}.shp'.format(shp_name))
    source = gpd.read_file(shp_source)
    source = source.to_crs({'init' :'epsg:3857'})

    src_coord = source[['LONGITUDE', 'LATITUDE']]

    from sklearn.decomposition import FastICA
    import pandas as pd
    from shapely.geometry import Point

    rng = np.random.RandomState(42)

    pca = FastICA(n_components=2, algorithm='parallel', whiten=True, max_iter=100)
    src_coord_pca = pca.fit_transform(src_coord)

    src_coord_pca_df = pd.DataFrame(src_coord_pca).rename(columns={0:'X', 1:'Y'})
    src_coord_pca_df['geometry'] = list(zip(src_coord_pca_df['X'], src_coord_pca_df['Y']))
    src_coord_pca_df['geometry'] = src_coord_pca_df['geometry'].apply(Point)
    src_coord_pca_gdf = gpd.GeoDataFrame(src_coord_pca_df, geometry='geometry')
    src_coord_pca_gdf.plot(figsize=(9, 9))

    compo, feat = pca.components_
    print('compo :', compo)
    print('feat :', feat)

    feat, compo = pca.mixing_
    print('compo :', compo)
    print('feat :', feat)


    #trial of empirical rule
    if (pca.components_[0][0] > 0 != pca.components_[0][1] > 0):
    print('vertical')
    src_coord_pca_df = pd.DataFrame(src_coord_pca)[0]

    else:
    print('horizontal')
    src_coord_pca_df = pd.DataFrame(src_coord_pca)[1]









    share|improve this question

























      1












      1








      1


      1






      I'm trying to cluster tractor sensor data by row in a python script. For the moment I'm trying to find data orientation after a FastICA (sklearn), vertical or horizontal. Because for same data, FastICA can orientate results differently.



      Same data, different orientation



      Until now, I was searching for an empirical rule with the 2 matrix FastICA().components_ and FastICA().mixing_. But I found nothing that works.



      Is somebody have an better idea?



      Here is data and my code below:



      import geopandas as gpd
      import numpy as np

      shp_name = 'rawdata379'

      shp_source = ('/home/jovyan/scripts/physiocap/Test_Data/{}.shp'.format(shp_name))
      source = gpd.read_file(shp_source)
      source = source.to_crs({'init' :'epsg:3857'})

      src_coord = source[['LONGITUDE', 'LATITUDE']]

      from sklearn.decomposition import FastICA
      import pandas as pd
      from shapely.geometry import Point

      rng = np.random.RandomState(42)

      pca = FastICA(n_components=2, algorithm='parallel', whiten=True, max_iter=100)
      src_coord_pca = pca.fit_transform(src_coord)

      src_coord_pca_df = pd.DataFrame(src_coord_pca).rename(columns={0:'X', 1:'Y'})
      src_coord_pca_df['geometry'] = list(zip(src_coord_pca_df['X'], src_coord_pca_df['Y']))
      src_coord_pca_df['geometry'] = src_coord_pca_df['geometry'].apply(Point)
      src_coord_pca_gdf = gpd.GeoDataFrame(src_coord_pca_df, geometry='geometry')
      src_coord_pca_gdf.plot(figsize=(9, 9))

      compo, feat = pca.components_
      print('compo :', compo)
      print('feat :', feat)

      feat, compo = pca.mixing_
      print('compo :', compo)
      print('feat :', feat)


      #trial of empirical rule
      if (pca.components_[0][0] > 0 != pca.components_[0][1] > 0):
      print('vertical')
      src_coord_pca_df = pd.DataFrame(src_coord_pca)[0]

      else:
      print('horizontal')
      src_coord_pca_df = pd.DataFrame(src_coord_pca)[1]









      share|improve this question














      I'm trying to cluster tractor sensor data by row in a python script. For the moment I'm trying to find data orientation after a FastICA (sklearn), vertical or horizontal. Because for same data, FastICA can orientate results differently.



      Same data, different orientation



      Until now, I was searching for an empirical rule with the 2 matrix FastICA().components_ and FastICA().mixing_. But I found nothing that works.



      Is somebody have an better idea?



      Here is data and my code below:



      import geopandas as gpd
      import numpy as np

      shp_name = 'rawdata379'

      shp_source = ('/home/jovyan/scripts/physiocap/Test_Data/{}.shp'.format(shp_name))
      source = gpd.read_file(shp_source)
      source = source.to_crs({'init' :'epsg:3857'})

      src_coord = source[['LONGITUDE', 'LATITUDE']]

      from sklearn.decomposition import FastICA
      import pandas as pd
      from shapely.geometry import Point

      rng = np.random.RandomState(42)

      pca = FastICA(n_components=2, algorithm='parallel', whiten=True, max_iter=100)
      src_coord_pca = pca.fit_transform(src_coord)

      src_coord_pca_df = pd.DataFrame(src_coord_pca).rename(columns={0:'X', 1:'Y'})
      src_coord_pca_df['geometry'] = list(zip(src_coord_pca_df['X'], src_coord_pca_df['Y']))
      src_coord_pca_df['geometry'] = src_coord_pca_df['geometry'].apply(Point)
      src_coord_pca_gdf = gpd.GeoDataFrame(src_coord_pca_df, geometry='geometry')
      src_coord_pca_gdf.plot(figsize=(9, 9))

      compo, feat = pca.components_
      print('compo :', compo)
      print('feat :', feat)

      feat, compo = pca.mixing_
      print('compo :', compo)
      print('feat :', feat)


      #trial of empirical rule
      if (pca.components_[0][0] > 0 != pca.components_[0][1] > 0):
      print('vertical')
      src_coord_pca_df = pd.DataFrame(src_coord_pca)[0]

      else:
      print('horizontal')
      src_coord_pca_df = pd.DataFrame(src_coord_pca)[1]






      python scikit-learn pca






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 4 hours ago









      Tim C.Tim C.

      463417




      463417






















          0






          active

          oldest

          votes











          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "79"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f313029%2fhow-to-find-data-orientation-atfer-an-ica%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Geographic Information Systems Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgis.stackexchange.com%2fquestions%2f313029%2fhow-to-find-data-orientation-atfer-an-ica%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Щит и меч (фильм) Содержание Названия серий | Сюжет |...

          Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

          Meter-Bus Содержание Параметры шины | Стандартизация |...