Integration of two exponential multiplied by each otherIntegrating $sin^2(x)$ using imaginary numbers.Need...

How do I prevent a homebrew Grappling Hook feature from trivializing Tomb of Annihilation?

Does an Eldritch Knight's Weapon Bond protect him from losing his weapon to a Telekinesis spell?

Does diversity provide anything that meritocracy does not?

When Are Enum Values Defined?

Equivalent of "illegal" for violating civil law

Which RAF squadrons and aircraft types took part in the bombing of Berlin on the 25th of August 1940?

Plausible reason for gold-digging ant

Is `Object` a function in javascript?

Why does 0.-5 evaluate to -5?

Does the US government have any planning in place to ensure there's no shortages of food, fuel, steel and other commodities?

How to not let the Identify spell spoil everything?

Microtypography protrusion with Polish quotation marks

Website seeing my Facebook data?

Why did Luke use his left hand to shoot?

What can I do to encourage my players to use their consumables?

Possible issue with my W4 and tax return

Renting a 2CV in France

Critique vs nitpicking

What's the oldest plausible frozen specimen for a Jurassic Park style story-line?

The No-Straight Maze

Should I cite R or RStudio?

Am I correct in stating that the study of topology is purely theoretical?

Are the positive and negative planes inner or outer planes in the Great Wheel cosmology model?

Why do neural networks need so many training examples to perform?



Integration of two exponential multiplied by each other


Integrating $sin^2(x)$ using imaginary numbers.Need help with integration by partsIntegrate $int frac{ln(sin x)}{sin^2 x},mathrm dx.$Integral $int frac{sqrt{16-x^2}}{x} mathrm{d}x$Solid Angle IntegrationDouble Integral of an Exponential Function with an Absolute Value in the Numerator of the ExponentComplex integral with exponential and tangentShow the value of an integral using integration by parts.How to calculate $int xe^{1/x^2} dx$How to integrate $int 2xe^{x^2-y^2}cos(2xy)- 2ye^{x^2-y^2}sin(2xy) mathrm dy$?













2












$begingroup$


I am having confusion on how to go about integrating this integral:



$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$



I attempted by using integration by parts but that didn't work.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
    $endgroup$
    – Gus
    1 hour ago
















2












$begingroup$


I am having confusion on how to go about integrating this integral:



$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$



I attempted by using integration by parts but that didn't work.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
    $endgroup$
    – Gus
    1 hour ago














2












2








2





$begingroup$


I am having confusion on how to go about integrating this integral:



$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$



I attempted by using integration by parts but that didn't work.










share|cite|improve this question











$endgroup$




I am having confusion on how to go about integrating this integral:



$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$



I attempted by using integration by parts but that didn't work.







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Thomas Shelby

3,6342525




3,6342525










asked 3 hours ago









articatarticat

163




163












  • $begingroup$
    This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
    $endgroup$
    – Gus
    1 hour ago


















  • $begingroup$
    This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
    $endgroup$
    – Gus
    1 hour ago
















$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
1 hour ago




$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
1 hour ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126893%2fintegration-of-two-exponential-multiplied-by-each-other%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$






      share|cite|improve this answer











      $endgroup$


















        4












        $begingroup$

        Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$






        share|cite|improve this answer











        $endgroup$
















          4












          4








          4





          $begingroup$

          Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$






          share|cite|improve this answer











          $endgroup$



          Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          Thomas ShelbyThomas Shelby

          3,6342525




          3,6342525























              2












              $begingroup$

              Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$






                  share|cite|improve this answer









                  $endgroup$



                  Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  Graham KempGraham Kemp

                  86.1k43478




                  86.1k43478






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126893%2fintegration-of-two-exponential-multiplied-by-each-other%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                      Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

                      Meter-Bus Содержание Параметры шины | Стандартизация |...