Square Root Distance from IntegersCalculate the square root only using ++Sorted Lexical Partition of a...

What makes papers publishable in top-tier journals?

"Starve to death" Vs. "Starve to the point of death"

A fantasy book with seven white haired women on the cover

How do you funnel food off a cutting board?

Is there a file that always exists and a 'normal' user can't lstat it?

Potential client has a problematic employee I can't work with

Why didn't Tom Riddle take the presence of Fawkes and the Sorting Hat as more of a threat?

What species should be used for storage of human minds?

Does the ditching switch allow an A320 to float indefinitely?

The No-Straight Maze

Can you determine if focus is sharp without diopter adjustment if your sight is imperfect?

Does Skippy chunky peanut butter contain trans fat?

How to not let the Identify spell spoil everything?

Translation needed for 130 years old church document

Broad Strokes - missing letter riddle

Can a player sacrifice a creature after declaring that creature as blocker while taking lethal damage?

Crack the bank account's password!

Book where a space ship journeys to the center of the galaxy to find all the stars had gone supernova

Microtypography protrusion with Polish quotation marks

What is the industry term for house wiring diagrams?

How do you get out of your own psychology to write characters?

Eww, those bytes are gross

Renting a 2CV in France

Custom shape shows unwanted extra line



Square Root Distance from Integers


Calculate the square root only using ++Sorted Lexical Partition of a NumberReverse and squareThe fastest square root calculatorRobbers - square times square rootCops - square times square rootFermat's factorization helperMiller-Rabin Strong PseudoprimesExact change in fewest bills and coinsApproximate My Squares













4












$begingroup$


Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



Rules




  • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

  • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


Test Cases



.9         > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463


Comma separated test case inputs:



0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


This is code-golf, so shortest answer in bytes wins.










share|improve this question











$endgroup$

















    4












    $begingroup$


    Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



    Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



    If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



    Rules




    • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

    • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


    Test Cases



    .9         > 2
    .5 > 2
    .4 > 3
    .3 > 3
    .25 > 5
    .2 > 8
    .1 > 26
    .05 > 101
    .03 > 288
    .01 > 2501
    .005 > 10001
    .003 > 27888
    .001 > 250001
    .0005 > 1000001
    .0003 > 2778888
    .0001 > 25000001
    .0314159 > 255
    .00314159 > 25599
    .000314159 > 2534463


    Comma separated test case inputs:



    0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


    This is code-golf, so shortest answer in bytes wins.










    share|improve this question











    $endgroup$















      4












      4








      4





      $begingroup$


      Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



      Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



      If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



      Rules




      • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

      • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


      Test Cases



      .9         > 2
      .5 > 2
      .4 > 3
      .3 > 3
      .25 > 5
      .2 > 8
      .1 > 26
      .05 > 101
      .03 > 288
      .01 > 2501
      .005 > 10001
      .003 > 27888
      .001 > 250001
      .0005 > 1000001
      .0003 > 2778888
      .0001 > 25000001
      .0314159 > 255
      .00314159 > 25599
      .000314159 > 2534463


      Comma separated test case inputs:



      0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


      This is code-golf, so shortest answer in bytes wins.










      share|improve this question











      $endgroup$




      Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



      Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



      If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



      Rules




      • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

      • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


      Test Cases



      .9         > 2
      .5 > 2
      .4 > 3
      .3 > 3
      .25 > 5
      .2 > 8
      .1 > 26
      .05 > 101
      .03 > 288
      .01 > 2501
      .005 > 10001
      .003 > 27888
      .001 > 250001
      .0005 > 1000001
      .0003 > 2778888
      .0001 > 25000001
      .0314159 > 255
      .00314159 > 25599
      .000314159 > 2534463


      Comma separated test case inputs:



      0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


      This is code-golf, so shortest answer in bytes wins.







      code-golf number integer






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 12 mins ago







      Stephen

















      asked 57 mins ago









      StephenStephen

      7,37823395




      7,37823395






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          JavaScript (ES7),  51  50 bytes





          f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


          Try it online!



          (fails for the test cases that require too much recursion)





          Non-recursive version,  57  56 bytes





          k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


          Try it online!



          Or for 55 bytes:



          k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


          Try it online!



          (but this one is significantly slower)






          share|improve this answer











          $endgroup$





















            1












            $begingroup$


            Japt, 23 bytes



            _%1©(Z%1<Uª-Z%1Ä<U}a¬²r


            Try it online!






            share|improve this answer











            $endgroup$





















              1












              $begingroup$


              Wolfram Language (Mathematica), 36 bytes



              Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


              Try it online!






              share|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ifUsing("editor", function () {
                StackExchange.using("externalEditor", function () {
                StackExchange.using("snippets", function () {
                StackExchange.snippets.init();
                });
                });
                }, "code-snippets");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "200"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                JavaScript (ES7),  51  50 bytes





                f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                Try it online!



                (fails for the test cases that require too much recursion)





                Non-recursive version,  57  56 bytes





                k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                Try it online!



                Or for 55 bytes:



                k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                Try it online!



                (but this one is significantly slower)






                share|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  JavaScript (ES7),  51  50 bytes





                  f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                  Try it online!



                  (fails for the test cases that require too much recursion)





                  Non-recursive version,  57  56 bytes





                  k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                  Try it online!



                  Or for 55 bytes:



                  k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                  Try it online!



                  (but this one is significantly slower)






                  share|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    JavaScript (ES7),  51  50 bytes





                    f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                    Try it online!



                    (fails for the test cases that require too much recursion)





                    Non-recursive version,  57  56 bytes





                    k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                    Try it online!



                    Or for 55 bytes:



                    k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                    Try it online!



                    (but this one is significantly slower)






                    share|improve this answer











                    $endgroup$



                    JavaScript (ES7),  51  50 bytes





                    f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                    Try it online!



                    (fails for the test cases that require too much recursion)





                    Non-recursive version,  57  56 bytes





                    k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                    Try it online!



                    Or for 55 bytes:



                    k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                    Try it online!



                    (but this one is significantly slower)







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 8 mins ago

























                    answered 42 mins ago









                    ArnauldArnauld

                    76.8k693322




                    76.8k693322























                        1












                        $begingroup$


                        Japt, 23 bytes



                        _%1©(Z%1<Uª-Z%1Ä<U}a¬²r


                        Try it online!






                        share|improve this answer











                        $endgroup$


















                          1












                          $begingroup$


                          Japt, 23 bytes



                          _%1©(Z%1<Uª-Z%1Ä<U}a¬²r


                          Try it online!






                          share|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$


                            Japt, 23 bytes



                            _%1©(Z%1<Uª-Z%1Ä<U}a¬²r


                            Try it online!






                            share|improve this answer











                            $endgroup$




                            Japt, 23 bytes



                            _%1©(Z%1<Uª-Z%1Ä<U}a¬²r


                            Try it online!







                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited 16 mins ago

























                            answered 23 mins ago









                            ASCII-onlyASCII-only

                            3,3721236




                            3,3721236























                                1












                                $begingroup$


                                Wolfram Language (Mathematica), 36 bytes



                                Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                                Try it online!






                                share|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$


                                  Wolfram Language (Mathematica), 36 bytes



                                  Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                                  Try it online!






                                  share|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$


                                    Wolfram Language (Mathematica), 36 bytes



                                    Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                                    Try it online!






                                    share|improve this answer









                                    $endgroup$




                                    Wolfram Language (Mathematica), 36 bytes



                                    Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                                    Try it online!







                                    share|improve this answer












                                    share|improve this answer



                                    share|improve this answer










                                    answered 14 mins ago









                                    alephalphaalephalpha

                                    21.4k32991




                                    21.4k32991






























                                        draft saved

                                        draft discarded




















































                                        If this is an answer to a challenge…




                                        • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                                        • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                                          Explanations of your answer make it more interesting to read and are very much encouraged.


                                        • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.



                                        More generally…




                                        • …Please make sure to answer the question and provide sufficient detail.


                                        • …Avoid asking for help, clarification or responding to other answers (use comments instead).





                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                                        Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

                                        Meter-Bus Содержание Параметры шины | Стандартизация |...