Parametric curve length - calculus The Next CEO of Stack OverflowDetect “cusp” in...
How to invert MapIndexed on a ragged structure? How to construct a tree from rules?
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
Is it possible to search for a directory/file combination?
Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?
Elegant way to replace substring in a regex with optional groups in Python?
I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin
Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis
What does "Its cash flow is deeply negative" mean?
Should I tutor a student who I know has cheated on their homework?
Rotate a column
Why am I allowed to create multiple unique pointers from a single object?
How do we know the LHC results are robust?
Contours of a clandestine nature
Limits on contract work without pre-agreed price/contract (UK)
Received an invoice from my ex-employer billing me for training; how to handle?
Why don't programming languages automatically manage the synchronous/asynchronous problem?
Why do professional authors make "consistency" mistakes? And how to avoid them?
Multiple labels for a single equation
If the heap is initialized for security, then why is the stack uninitialized?
Sending manuscript to multiple publishers
Why does the UK parliament need a vote on the political declaration?
Anatomically Correct Strange Women In Ponds Distributing Swords
Why didn't Khan get resurrected in the Genesis Explosion?
Won the lottery - how do I keep the money?
Parametric curve length - calculus
The Next CEO of Stack OverflowDetect “cusp” in parametric curveFind the length of the parametric curve (Difficult)Parametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveDetermine the length of the Parametric Curve given by the set of parametric equations.Length of a parametric curve formula: What does the integral represent?
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
$endgroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.
I used integration and after some point I got lost :( What are the steps?
calculus parametric
calculus parametric
edited 59 mins ago
Peter Mortensen
565310
565310
asked 6 hours ago
McAMcA
184
184
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
New contributor
answered 6 hours ago
EagleToLearnEagleToLearn
233
233
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
edited 5 hours ago
answered 6 hours ago
Matt A PeltoMatt A Pelto
2,667621
2,667621
add a comment |
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
answered 6 hours ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.2k42867
78.2k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago