Parametric curve length - calculus The Next CEO of Stack OverflowDetect “cusp” in...

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Is it possible to search for a directory/file combination?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Elegant way to replace substring in a regex with optional groups in Python?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

What does "Its cash flow is deeply negative" mean?

Should I tutor a student who I know has cheated on their homework?

Rotate a column

Why am I allowed to create multiple unique pointers from a single object?

How do we know the LHC results are robust?

Contours of a clandestine nature

Limits on contract work without pre-agreed price/contract (UK)

Received an invoice from my ex-employer billing me for training; how to handle?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Why do professional authors make "consistency" mistakes? And how to avoid them?

Multiple labels for a single equation

If the heap is initialized for security, then why is the stack uninitialized?

Sending manuscript to multiple publishers

Why does the UK parliament need a vote on the political declaration?

Anatomically Correct Strange Women In Ponds Distributing Swords

Why didn't Khan get resurrected in the Genesis Explosion?

Won the lottery - how do I keep the money?



Parametric curve length - calculus



The Next CEO of Stack OverflowDetect “cusp” in parametric curveFind the length of the parametric curve (Difficult)Parametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveDetermine the length of the Parametric Curve given by the set of parametric equations.Length of a parametric curve formula: What does the integral represent?












2












$begingroup$


Find the length of the following parametric curve.



$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.



I used integration and after some point I got lost :( What are the steps?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    6 hours ago


















2












$begingroup$


Find the length of the following parametric curve.



$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.



I used integration and after some point I got lost :( What are the steps?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    6 hours ago
















2












2








2





$begingroup$


Find the length of the following parametric curve.



$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.



I used integration and after some point I got lost :( What are the steps?










share|cite|improve this question











$endgroup$




Find the length of the following parametric curve.



$x = 5 + frac92 t^3$, $y = 4 + 3 t^{frac92}$, $0 leq t leq 2$.



I used integration and after some point I got lost :( What are the steps?







calculus parametric






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 59 mins ago









Peter Mortensen

565310




565310










asked 6 hours ago









McAMcA

184




184












  • $begingroup$
    Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    6 hours ago




















  • $begingroup$
    Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    6 hours ago


















$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago






$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
6 hours ago












3 Answers
3






active

oldest

votes


















2












$begingroup$

Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$

Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$






share|cite|improve this answer








New contributor




EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$





















    2












    $begingroup$

    begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}



    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.






    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
      $$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Apply the formula for arc length, we get
        $$
        int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
        $$

        Then we make the change of variable $v=t^3+1$ to get
        $$
        int_1^9 frac 9 2 sqrt{v} dv = 78.
        $$






        share|cite|improve this answer








        New contributor




        EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$


















          2












          $begingroup$

          Apply the formula for arc length, we get
          $$
          int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
          $$

          Then we make the change of variable $v=t^3+1$ to get
          $$
          int_1^9 frac 9 2 sqrt{v} dv = 78.
          $$






          share|cite|improve this answer








          New contributor




          EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$
















            2












            2








            2





            $begingroup$

            Apply the formula for arc length, we get
            $$
            int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrt{v} dv = 78.
            $$






            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Apply the formula for arc length, we get
            $$
            int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrt{v} dv = 78.
            $$







            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 6 hours ago









            EagleToLearnEagleToLearn

            233




            233




            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.























                2












                $begingroup$

                begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}



                Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}



                  Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.






                    share|cite|improve this answer











                    $endgroup$



                    begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 5 hours ago

























                    answered 6 hours ago









                    Matt A PeltoMatt A Pelto

                    2,667621




                    2,667621























                        1












                        $begingroup$

                        You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
                        $$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
                          $$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
                            $$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$






                            share|cite|improve this answer









                            $endgroup$



                            You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
                            $$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 6 hours ago









                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                            78.2k42867




                            78.2k42867






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fparametric-curve-length-calculus%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Щит и меч (фильм) Содержание Названия серий | Сюжет |...

                                Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

                                Meter-Bus Содержание Параметры шины | Стандартизация |...