Phase of a real number The Next CEO of Stack OverflowWhat is the difference between phase...
Inappropriate reference requests from Journal reviewers
Does it take more energy to get to Venus or to Mars?
What connection does MS Office have to Netscape Navigator?
Why don't programming languages automatically manage the synchronous/asynchronous problem?
Would a completely good Muggle be able to use a wand?
How do we know the LHC results are robust?
Make solar eclipses exceedingly rare, but still have new moons
What happened in Rome, when the western empire "fell"?
Elegant way to replace substring in a regex with optional groups in Python?
Anatomically Correct Strange Women In Ponds Distributing Swords
In excess I'm lethal
How do I make a variable always equal to the result of some calculations?
Should I tutor a student who I know has cheated on their homework?
Is micro rebar a better way to reinforce concrete than rebar?
Why didn't Khan get resurrected in the Genesis Explosion?
What was the first Unix version to run on a microcomputer?
What is the result of assigning to std::vector<T>::begin()?
What's the best way to handle refactoring a big file?
Bold, vivid family
Written every which way
Is it possible to search for a directory/file combination?
Why do professional authors make "consistency" mistakes? And how to avoid them?
Return the Closest Prime Number
How to avoid supervisors with prejudiced views?
Phase of a real number
The Next CEO of Stack OverflowWhat is the difference between phase delay and group delay?How do you relate imaginary numbers with phase shift? How to imagine this?Phase factors for an 32 point fftbaffled by fft phase spectrum!How are phase values able to capture motion from video?In filter design, why isn't it possible to have a frequency response with phase 0?Extracting accurate phase and amplitude information from FFT with an arbitrary number of samplesContinuous phase for phase delay calculus in FIR filtersPhase spectrum of 2D real functionPlotting the Phase Response
$begingroup$
Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?
I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.
phase
$endgroup$
add a comment |
$begingroup$
Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?
I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.
phase
$endgroup$
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago
add a comment |
$begingroup$
Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?
I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.
phase
$endgroup$
Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?
I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.
phase
phase
asked 5 hours ago
NioushaNiousha
1596
1596
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago
add a comment |
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.
"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.
Your question is equivalent to "For what values of arg(z) is z a real number?"
If that is meaningless to you, I suggest you start by reading two blog articles of mine:
The Exponential Nature of the Complex Unit Circle
And the newest:
Angle Addition Formulas from Euler's Formula
There are of course many other searches. Your terms should be "complex plane real values" for a start.
This is essential foundation material for a lot of DSP concepts.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "295"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56336%2fphase-of-a-real-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.
"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.
Your question is equivalent to "For what values of arg(z) is z a real number?"
If that is meaningless to you, I suggest you start by reading two blog articles of mine:
The Exponential Nature of the Complex Unit Circle
And the newest:
Angle Addition Formulas from Euler's Formula
There are of course many other searches. Your terms should be "complex plane real values" for a start.
This is essential foundation material for a lot of DSP concepts.
$endgroup$
add a comment |
$begingroup$
Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.
"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.
Your question is equivalent to "For what values of arg(z) is z a real number?"
If that is meaningless to you, I suggest you start by reading two blog articles of mine:
The Exponential Nature of the Complex Unit Circle
And the newest:
Angle Addition Formulas from Euler's Formula
There are of course many other searches. Your terms should be "complex plane real values" for a start.
This is essential foundation material for a lot of DSP concepts.
$endgroup$
add a comment |
$begingroup$
Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.
"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.
Your question is equivalent to "For what values of arg(z) is z a real number?"
If that is meaningless to you, I suggest you start by reading two blog articles of mine:
The Exponential Nature of the Complex Unit Circle
And the newest:
Angle Addition Formulas from Euler's Formula
There are of course many other searches. Your terms should be "complex plane real values" for a start.
This is essential foundation material for a lot of DSP concepts.
$endgroup$
Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.
"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.
Your question is equivalent to "For what values of arg(z) is z a real number?"
If that is meaningless to you, I suggest you start by reading two blog articles of mine:
The Exponential Nature of the Complex Unit Circle
And the newest:
Angle Addition Formulas from Euler's Formula
There are of course many other searches. Your terms should be "complex plane real values" for a start.
This is essential foundation material for a lot of DSP concepts.
edited 4 hours ago
MBaz
9,01041733
9,01041733
answered 4 hours ago
Cedron DawgCedron Dawg
3,0632312
3,0632312
add a comment |
add a comment |
Thanks for contributing an answer to Signal Processing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56336%2fphase-of-a-real-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago