Classification of surfacesconnected sum of torus with projective planeWhy can all surfaces with boundary be...
How can I practically buy stocks?
Mistake in years of experience in resume?
How to not starve gigantic beasts
How to stop co-workers from teasing me because I know Russian?
Why do games have consumables?
Why does Mind Blank stop the Feeblemind spell?
What happens to Mjolnir (Thor's hammer) at the end of Endgame?
Like totally amazing interchangeable sister outfits II: The Revenge
How to write a column outside the braces in a matrix?
Rivers without rain
Does tea made with boiling water cool faster than tea made with boiled (but still hot) water?
Is the claim "Employers won't employ people with no 'social media presence'" realistic?
What are the steps to solving this definite integral?
Was there a Viking Exchange as well as a Columbian one?
How to display Aura JS Errors Lightning Out
How to pronounce 'c++' in Spanish
Is it idiomatic to construct against `this`
On The Origin of Dissonant Chords
Re-entry to Germany after vacation using blue card
What does the integral of a function times a function of a random variable represent, conceptually?
How did Captain America manage to do this?
How much cash can I safely carry into the USA and avoid civil forfeiture?
What is causing the white spot to appear in some of my pictures
Pre-plastic human skin alternative
Classification of surfaces
connected sum of torus with projective planeWhy can all surfaces with boundary be realized in $mathbb{R}^3$?2-cell embeddings of graphs in surfaces and Euler formulaAbout zeros of vector fields in compact surfacesClassification of orientable non-closed surfacesClosed, orientable surface whose genus is very hard to find intuitivelyNonorientable surfaces: genus or demigenus?Surface has Euler characteristic 2 iff equal to sphereClassification of surfaces theoremClassification of 2-dim topological manifold (not necessarily second countable)Connected sum of two non homeomorphic surfaces
$begingroup$
The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_{g}T^2)# (#_{b} D^2)# (#_{c} mathbb{R}P^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.
From there, it is easy to compute $chi(M)=2-2g-b-c$.
Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.
I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?
manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces
$endgroup$
add a comment |
$begingroup$
The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_{g}T^2)# (#_{b} D^2)# (#_{c} mathbb{R}P^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.
From there, it is easy to compute $chi(M)=2-2g-b-c$.
Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.
I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?
manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces
$endgroup$
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago
add a comment |
$begingroup$
The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_{g}T^2)# (#_{b} D^2)# (#_{c} mathbb{R}P^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.
From there, it is easy to compute $chi(M)=2-2g-b-c$.
Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.
I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?
manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces
$endgroup$
The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_{g}T^2)# (#_{b} D^2)# (#_{c} mathbb{R}P^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.
From there, it is easy to compute $chi(M)=2-2g-b-c$.
Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.
I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?
manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces
manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces
asked 4 hours ago
KarenKaren
1336
1336
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago
add a comment |
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.
This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.
Please correct me if I misunderstood your question.
$endgroup$
add a comment |
$begingroup$
Since $mathbb{R}P^2# mathbb{R}P^2#mathbb{R}P^2cong mathbb{R}P^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.
Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203841%2fclassification-of-surfaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.
This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.
Please correct me if I misunderstood your question.
$endgroup$
add a comment |
$begingroup$
If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.
This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.
Please correct me if I misunderstood your question.
$endgroup$
add a comment |
$begingroup$
If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.
This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.
Please correct me if I misunderstood your question.
$endgroup$
If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.
This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.
Please correct me if I misunderstood your question.
answered 3 hours ago
Adam ChalumeauAdam Chalumeau
48010
48010
add a comment |
add a comment |
$begingroup$
Since $mathbb{R}P^2# mathbb{R}P^2#mathbb{R}P^2cong mathbb{R}P^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.
Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.
$endgroup$
add a comment |
$begingroup$
Since $mathbb{R}P^2# mathbb{R}P^2#mathbb{R}P^2cong mathbb{R}P^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.
Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.
$endgroup$
add a comment |
$begingroup$
Since $mathbb{R}P^2# mathbb{R}P^2#mathbb{R}P^2cong mathbb{R}P^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.
Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.
$endgroup$
Since $mathbb{R}P^2# mathbb{R}P^2#mathbb{R}P^2cong mathbb{R}P^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.
Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.
answered 3 hours ago
Eric WofseyEric Wofsey
194k14223354
194k14223354
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203841%2fclassification-of-surfaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
3 hours ago