Is there a defined priority for pattern matching?Using a PatternTest versus a Condition for pattern...
Cat is tipping over bed-side lamps during the night
Saint abbreviation
Why does magnet wire need to be insulated?
What game did these black and yellow dice come from?
A starship is travelling at 0.9c and collides with a small rock. Will it leave a clean hole through, or will more happen?
Short story where statues have their heads replaced by those of carved insect heads
How does one write from a minority culture? A question on cultural references
What is a good reason for every spaceship to carry a weapon on board?
Why did Luke use his left hand to shoot?
Is using an 'empty' metaphor considered bad style?
Airplane generations - how does it work?
Hilchos Shabbos English Sefer
How do I prevent a homebrew Grappling Hook feature from trivializing Tomb of Annihilation?
Why is Agricola named as such?
Has Britain negotiated with any other countries outside the EU in preparation for the exit?
What will happen if Parliament votes "no" on each of the Brexit-related votes to be held on the 12th, 13th and 14th of March?
TikZ graph edges not drawn nicely
What happened to my GE option?
How do you voice extended chords?
What is a DAG (Graph Theory)?
Why does PHOTOREC keep finding files?
Why is it that Bernie Sanders is always called a "socialist"?
In Linux what happens if 1000 files in a directory are moved to another location while another 300 files were added to the source directory?
After checking in online, how do I know whether I need to go show my passport at airport check-in?
Is there a defined priority for pattern matching?
Using a PatternTest versus a Condition for pattern matchingIs pure pattern matching without PatternTest and Condition Turing-complete?Classifying poker hands by pattern matchingMore general pattern fails to match everything the more specific pattern does.Detecting a more general patternPattern matching to head with HoldFirstHow to visualize pattern matching process?Pattern matching an expression involving TimesCompare arrays using custom pattern matchingPattern Match Bug with Equals?
$begingroup$
If you define a function g, like so:
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
why will Mathematica always return g[2] == "Even"
, even though NumberQ[2] == True
?
More specifically, is there a defined order in which Mathematica will try to match function cases? Does it evaluate the most specific match first?
pattern-matching expression-test
New contributor
$endgroup$
add a comment |
$begingroup$
If you define a function g, like so:
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
why will Mathematica always return g[2] == "Even"
, even though NumberQ[2] == True
?
More specifically, is there a defined order in which Mathematica will try to match function cases? Does it evaluate the most specific match first?
pattern-matching expression-test
New contributor
$endgroup$
$begingroup$
g[x_NumberQ]
means to match arguments with the headNumberQ
. What you want is to match arguments such thatNumberQ[x]
isTrue
, which isg[x_?NumberQ]
. Look upPatternTest[]
. (Before you make this correction, make sure to runClear[g]
first.)
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
2
$begingroup$
Once you have made this fix, evaluateDownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Or just execute?g
to see the order of the definitions.
$endgroup$
– Roman
16 mins ago
add a comment |
$begingroup$
If you define a function g, like so:
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
why will Mathematica always return g[2] == "Even"
, even though NumberQ[2] == True
?
More specifically, is there a defined order in which Mathematica will try to match function cases? Does it evaluate the most specific match first?
pattern-matching expression-test
New contributor
$endgroup$
If you define a function g, like so:
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
why will Mathematica always return g[2] == "Even"
, even though NumberQ[2] == True
?
More specifically, is there a defined order in which Mathematica will try to match function cases? Does it evaluate the most specific match first?
pattern-matching expression-test
pattern-matching expression-test
New contributor
New contributor
edited 1 hour ago
wgoodall01
New contributor
asked 1 hour ago
wgoodall01wgoodall01
1185
1185
New contributor
New contributor
$begingroup$
g[x_NumberQ]
means to match arguments with the headNumberQ
. What you want is to match arguments such thatNumberQ[x]
isTrue
, which isg[x_?NumberQ]
. Look upPatternTest[]
. (Before you make this correction, make sure to runClear[g]
first.)
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
2
$begingroup$
Once you have made this fix, evaluateDownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Or just execute?g
to see the order of the definitions.
$endgroup$
– Roman
16 mins ago
add a comment |
$begingroup$
g[x_NumberQ]
means to match arguments with the headNumberQ
. What you want is to match arguments such thatNumberQ[x]
isTrue
, which isg[x_?NumberQ]
. Look upPatternTest[]
. (Before you make this correction, make sure to runClear[g]
first.)
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
2
$begingroup$
Once you have made this fix, evaluateDownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.
$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Or just execute?g
to see the order of the definitions.
$endgroup$
– Roman
16 mins ago
$begingroup$
g[x_NumberQ]
means to match arguments with the head NumberQ
. What you want is to match arguments such that NumberQ[x]
is True
, which is g[x_?NumberQ]
. Look up PatternTest[]
. (Before you make this correction, make sure to run Clear[g]
first.)$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
g[x_NumberQ]
means to match arguments with the head NumberQ
. What you want is to match arguments such that NumberQ[x]
is True
, which is g[x_?NumberQ]
. Look up PatternTest[]
. (Before you make this correction, make sure to run Clear[g]
first.)$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
2
2
$begingroup$
Once you have made this fix, evaluate
DownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Once you have made this fix, evaluate
DownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Or just execute
?g
to see the order of the definitions.$endgroup$
– Roman
16 mins ago
$begingroup$
Or just execute
?g
to see the order of the definitions.$endgroup$
– Roman
16 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
TheOrderingOfDefinitions
- ... The Wolfram System follows the principle of trying to put more general definitions after more specific ones. This means that special cases of rules are typically tried before more general cases.
- Although in many practical cases, the Wolfram System can recognize when one rule is more general than another, you should realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not clear, the Wolfram System stores rules in the order you give them.
ClearAll[g]
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
g /@ {1, 2}
{"number", "even"}
ClearAll[h]
h[x_?NumberQ] := "number"
h[x_?EvenQ] := "even"
h /@ {1, 2}
{"number", "number"}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
wgoodall01 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192278%2fis-there-a-defined-priority-for-pattern-matching%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
TheOrderingOfDefinitions
- ... The Wolfram System follows the principle of trying to put more general definitions after more specific ones. This means that special cases of rules are typically tried before more general cases.
- Although in many practical cases, the Wolfram System can recognize when one rule is more general than another, you should realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not clear, the Wolfram System stores rules in the order you give them.
ClearAll[g]
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
g /@ {1, 2}
{"number", "even"}
ClearAll[h]
h[x_?NumberQ] := "number"
h[x_?EvenQ] := "even"
h /@ {1, 2}
{"number", "number"}
$endgroup$
add a comment |
$begingroup$
TheOrderingOfDefinitions
- ... The Wolfram System follows the principle of trying to put more general definitions after more specific ones. This means that special cases of rules are typically tried before more general cases.
- Although in many practical cases, the Wolfram System can recognize when one rule is more general than another, you should realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not clear, the Wolfram System stores rules in the order you give them.
ClearAll[g]
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
g /@ {1, 2}
{"number", "even"}
ClearAll[h]
h[x_?NumberQ] := "number"
h[x_?EvenQ] := "even"
h /@ {1, 2}
{"number", "number"}
$endgroup$
add a comment |
$begingroup$
TheOrderingOfDefinitions
- ... The Wolfram System follows the principle of trying to put more general definitions after more specific ones. This means that special cases of rules are typically tried before more general cases.
- Although in many practical cases, the Wolfram System can recognize when one rule is more general than another, you should realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not clear, the Wolfram System stores rules in the order you give them.
ClearAll[g]
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
g /@ {1, 2}
{"number", "even"}
ClearAll[h]
h[x_?NumberQ] := "number"
h[x_?EvenQ] := "even"
h /@ {1, 2}
{"number", "number"}
$endgroup$
TheOrderingOfDefinitions
- ... The Wolfram System follows the principle of trying to put more general definitions after more specific ones. This means that special cases of rules are typically tried before more general cases.
- Although in many practical cases, the Wolfram System can recognize when one rule is more general than another, you should realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not clear, the Wolfram System stores rules in the order you give them.
ClearAll[g]
g[x_?EvenQ] := "even"
g[x_?NumberQ] := "number"
g /@ {1, 2}
{"number", "even"}
ClearAll[h]
h[x_?NumberQ] := "number"
h[x_?EvenQ] := "even"
h /@ {1, 2}
{"number", "number"}
edited 1 hour ago
answered 1 hour ago
kglrkglr
186k10202421
186k10202421
add a comment |
add a comment |
wgoodall01 is a new contributor. Be nice, and check out our Code of Conduct.
wgoodall01 is a new contributor. Be nice, and check out our Code of Conduct.
wgoodall01 is a new contributor. Be nice, and check out our Code of Conduct.
wgoodall01 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192278%2fis-there-a-defined-priority-for-pattern-matching%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
g[x_NumberQ]
means to match arguments with the headNumberQ
. What you want is to match arguments such thatNumberQ[x]
isTrue
, which isg[x_?NumberQ]
. Look upPatternTest[]
. (Before you make this correction, make sure to runClear[g]
first.)$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
That's right---fixed.
$endgroup$
– wgoodall01
1 hour ago
2
$begingroup$
Once you have made this fix, evaluate
DownValues[g]
; that should give a hint as to which case gets applied first. Generally, it tries to put special cases first before general ones.$endgroup$
– J. M. is computer-less♦
1 hour ago
$begingroup$
Or just execute
?g
to see the order of the definitions.$endgroup$
– Roman
16 mins ago