Minimizing with differential evolutionMinimizing a function of many coordinatesMinimizing a function with...

What problems would a superhuman have who's skin is constantly hot?

I can't die. Who am I?

Are all players supposed to be able to see each others' character sheets?

Which classes are needed to have access to every spell in the PHB?

Is it possible to avoid unpacking when merging Association?

How does Ehrenfest's theorem apply to the quantum harmonic oscillator?

Why does Solve lock up when trying to solve the quadratic equation with large integers?

Power Strip for Europe

Source permutation

How exactly does an Ethernet collision happen in the cable, since nodes use different circuits for Tx and Rx?

Can we track matter through time by looking at different depths in space?

What will happen if my luggage gets delayed?

What are some noteworthy "mic-drop" moments in math?

Has a sovereign Communist government ever run, and conceded loss, on a fair election?

How can I find out information about a service?

Can I negotiate a patent idea for a raise, under French law?

Why is there an extra space when I type "ls" in the Desktop directory?

Should I take out a loan for a friend to invest on my behalf?

Why aren't there more Gauls like Obelix?

Is it possible to find 2014 distinct positive integers whose sum is divisible by each of them?

How do spaceships determine each other's mass in space?

Is it safe to abruptly remove Arduino power?

Why couldn't the separatists legally leave the Republic?

Why is a very small peak with larger m/z not considered to be the molecular ion?



Minimizing with differential evolution


Minimizing a function of many coordinatesMinimizing a function with some restrictionsMinimizing Multiple FunctionsProblem in minimizing expressionSolving 4 coupled differential equation and minimizing the solutionProblem when minimizing user-defined function in Mathematica with Minimize[]Minimizing with constraintsMinimizing functions with parametersMinimizing a conditional function with parametersMinimizing a function problem













4












$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];

p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> {0, 15}]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



{fit, intermediates} = 
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];

p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]

Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$












  • $begingroup$
    Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    55 mins ago


















4












$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];

p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> {0, 15}]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



{fit, intermediates} = 
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];

p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]

Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$












  • $begingroup$
    Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    55 mins ago
















4












4








4


2



$begingroup$


A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];

p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> {0, 15}]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



{fit, intermediates} = 
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];

p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]

Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]


enter image description here










share|improve this question











$endgroup$




A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize, given
DifferentialEvolution as an option, but it turns out that does not work as I espected.



Is it possible to extract intermediate step in DifferentialEvolution, or do I have to implement algorithm myself?



f[x_, y_] := 
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20

p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];

p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];

p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];

Show[p1, p3, PlotRange -> {0, 15}]


enter image description here



When I use StepMonitor to track iterations as follows, it does not work.



{fit, intermediates} = 
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];

Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]


EDIT
Here is the result when we used @Michael E2 solution. Cool!!



f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - 
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20

p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];

p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];

p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];

p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]

Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet

Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]


enter image description here







mathematical-optimization






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago







Okkes Dulgerci

















asked 3 hours ago









Okkes DulgerciOkkes Dulgerci

5,2691917




5,2691917












  • $begingroup$
    Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    55 mins ago




















  • $begingroup$
    Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
    $endgroup$
    – Michael E2
    55 mins ago


















$begingroup$
Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
$endgroup$
– Michael E2
55 mins ago






$begingroup$
Note that blocking f (Block[{f}, ...]) isn't necessary. It was just to prevent f from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f, x, etc. -- thanks for the accept!
$endgroup$
– Michael E2
55 mins ago












1 Answer
1






active

oldest

votes


















3












$begingroup$

Here's a way:



Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]

Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]


enter image description here



You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "387"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Here's a way:



    Block[{f},
    f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
    E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
    {fit, intermediates} =
    Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
    MaxIterations -> 30,
    Method -> {"DifferentialEvolution",
    "InitialPoints" -> Tuples[Range[-5, 5], 2]},
    StepMonitor :>
    Sow[{Optimization`NMinimizeDump`vecs,
    Optimization`NMinimizeDump`vals}]]];
    ]

    Manipulate[
    Graphics[{
    PointSize[Medium],
    Point[intermediates[[1, n, 1]],
    VertexColors ->
    ColorData["Rainbow"] /@
    Rescale[intermediates[[1, n, 2]],
    MinMax[intermediates[[1, All, 2]]]]]
    },
    PlotRange -> 5, Frame -> True],
    {n, 1, Length@intermediates[[1]], 1}
    ]


    enter image description here



    You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






    share|improve this answer









    $endgroup$


















      3












      $begingroup$

      Here's a way:



      Block[{f},
      f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
      E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
      {fit, intermediates} =
      Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
      MaxIterations -> 30,
      Method -> {"DifferentialEvolution",
      "InitialPoints" -> Tuples[Range[-5, 5], 2]},
      StepMonitor :>
      Sow[{Optimization`NMinimizeDump`vecs,
      Optimization`NMinimizeDump`vals}]]];
      ]

      Manipulate[
      Graphics[{
      PointSize[Medium],
      Point[intermediates[[1, n, 1]],
      VertexColors ->
      ColorData["Rainbow"] /@
      Rescale[intermediates[[1, n, 2]],
      MinMax[intermediates[[1, All, 2]]]]]
      },
      PlotRange -> 5, Frame -> True],
      {n, 1, Length@intermediates[[1]], 1}
      ]


      enter image description here



      You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






      share|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Here's a way:



        Block[{f},
        f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
        E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
        {fit, intermediates} =
        Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
        MaxIterations -> 30,
        Method -> {"DifferentialEvolution",
        "InitialPoints" -> Tuples[Range[-5, 5], 2]},
        StepMonitor :>
        Sow[{Optimization`NMinimizeDump`vecs,
        Optimization`NMinimizeDump`vals}]]];
        ]

        Manipulate[
        Graphics[{
        PointSize[Medium],
        Point[intermediates[[1, n, 1]],
        VertexColors ->
        ColorData["Rainbow"] /@
        Rescale[intermediates[[1, n, 2]],
        MinMax[intermediates[[1, All, 2]]]]]
        },
        PlotRange -> 5, Frame -> True],
        {n, 1, Length@intermediates[[1]], 1}
        ]


        enter image description here



        You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.






        share|improve this answer









        $endgroup$



        Here's a way:



        Block[{f},
        f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
        E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
        {fit, intermediates} =
        Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
        MaxIterations -> 30,
        Method -> {"DifferentialEvolution",
        "InitialPoints" -> Tuples[Range[-5, 5], 2]},
        StepMonitor :>
        Sow[{Optimization`NMinimizeDump`vecs,
        Optimization`NMinimizeDump`vals}]]];
        ]

        Manipulate[
        Graphics[{
        PointSize[Medium],
        Point[intermediates[[1, n, 1]],
        VertexColors ->
        ColorData["Rainbow"] /@
        Rescale[intermediates[[1, n, 2]],
        MinMax[intermediates[[1, All, 2]]]]]
        },
        PlotRange -> 5, Frame -> True],
        {n, 1, Length@intermediates[[1]], 1}
        ]


        enter image description here



        You can find out about things like Optimization`NMinimizeDump`vecs by inspecting the code for Optimization`NMinimizeDump`CoreDE.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 hours ago









        Michael E2Michael E2

        148k12198478




        148k12198478






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Щит и меч (фильм) Содержание Названия серий | Сюжет |...

            Венесуэла на летних Олимпийских играх 2000 Содержание Состав...

            Meter-Bus Содержание Параметры шины | Стандартизация |...